10,446 research outputs found

    U(2) Flavor Physics without U(2) Symmetry

    Get PDF
    We present a model of fermion masses based on a minimal, non-Abelian discrete symmetry that reproduces the Yukawa matrices usually associated with U(2) theories of flavor. Mass and mixing angle relations that follow from the simple form of the quark and charged lepton Yukawa textures are therefore common to both theories. We show that the differing representation structure of our horizontal symmetry allows for new solutions to the solar and atmospheric neutrino problems that do not involve modification of the original charged fermion Yukawa textures, or the introduction of sterile neutrinos.Comment: 12 pages RevTeX, 1 eps figure. A few typos correcte

    What brakes the Crab pulsar?

    Get PDF
    Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2.0e10 turns. Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.Comment: 11 pages, 8 figures, 3 tables; accepted for publication in Astronomy & Astrophysic

    Expressive Stream Reasoning with Laser

    Full text link
    An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201

    Instructive composites for bone regeneration

    Get PDF
    Developing new biomaterials for tissue regeneration requires careful balance\ud between many factors, which is challenging because, on one side, such materials\ud must provide complex information, through their physicochemical properties to\ud actively interact with the biological surroundings and induce tissue regeneration. On the other side, regulatory issues, costs and ease of use of the final device, require low system complexity. For this reason, an emerging strategy is not attempting to recreate the complexity of tissues in vitro, but to focus on synthetic materials that have ‘intrinsic’ features that can instruct cells in vivo finally determining their fate.\ud Therefore, newly developed biomaterials should be carefully designed to have\ud specific local characteristics (e.g. surface stiffness, chemistry and topography) that can induce controlled cellular behaviors ultimately leading to tissue regeneration. In bone tissue regeneration by biomaterials, such instructing phenomenon is referred as ‘osteoinduction’.\ud In this thesis we aimed to develop simple biomaterial systems, i.e. composites of two phases (i.e. polymer and calcium phosphate) that could be able to interact with the biological system. In particular, we have striven to understand the role of some ‘intrinsic’ characteristics of the composite phases (e.g. calcium phosphate content, polymer molecular weight and monomer chemistry) in determining crucial phenomena occurring at the interface between biomaterial and biological environment. Such surface processes, e.g. surface mineralization and protein adsorption, play key roles in instructing (stem) cells leading to bone tissue regeneration. Besides this, we also studied how the mechanical and physical properties of the composites were affected by the two phases and tried to develop a material with as close properties as possible to those of bone tissue

    One- and Two-Nucleon Structure form Green's Function Theory

    Get PDF
    We review some applications of self-consistent Green's function theory to studies of one- and two-nucleon structure in finite nuclei. Large-scale microscopic calculations that employ realistic nuclear forces are now possible. Effects of long-range correlations are seen to play a dominant role in determining the quenching of absolute spectroscopic factors. They also enhance considerably (e,e'pn) cross sections in superparallel kinematics, in agreement with observations.Comment: Proceedings of the International Symposium on "Forefronts of Researches in Exotic Nuclear Structures" (Niigata2010)

    Effects of nuclear correlations on the 16^{16}O(e,e′pN)(e,e'pN) reactions to discrete final states

    Get PDF
    Calculations of the 16^{16}O(e,e′pN)(e,e'pN) cross sections to the ground state and first excited levels of the 14^{14}C and 14^{14}N nuclei are presented. The effects of nuclear fragmentation have been obtained in a self-consistent approach and are accounted for in the determination of the two-nucleon removal amplitudes. The Hilbert space is partitioned in order to compute the contribution of both long- and short-range effects in a separate way. Both the two-proton and the proton-neutron emission cross sections have been computed within the same models for the reaction mechanism and the contribution from nuclear structure, with the aim of better comparing the differences between the two physical processes. The 16^{16}O(e,e′pp)(e,e'pp) reaction is found to be sensitive to short-range correlations, in agreement with previous results. The 16^{16}O(e,e′pn)(e,e'pn) cross section to 1+1^+ final states is dominated by the Δ\Delta current and tensor correlations. For both reactions, the interplay between collective (long-range) effects and short-range and tensor correlations plays an important role. This suggests that the selectivity of (e,e′pN)(e,e'pN) reactions to the final state can be used to probe correlations also beyond short-range effects.Comment: 13 pages, 9 figure

    Nori 1-motives

    Full text link
    Let EHM be Nori's category of effective homological mixed motives. In this paper, we consider the thick abelian subcategory EHM_1 generated by the i-th relative homology of pairs of varieties for i = 0,1. We show that EHM_1 is naturally equivalent to the abelian category M_1 of Deligne 1-motives with torsion; this is our main theorem. Along the way, we obtain several interesting results. Firstly, we realize M_1 as the universal abelian category obtained, using Nori's formalism, from the Betti representation of an explicit diagram of curves. Secondly, we obtain a conceptual proof of a theorem of Vologodsky on realizations of 1-motives. Thirdly, we verify a conjecture of Deligne on extensions of 1-motives in the category of mixed realizations for those extensions that are effective in Nori's sense
    • …
    corecore